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Introduction
Maximum a Posteriori Probability and Graphical Model
Definition and Symbols

What Is This Paper About

MAP derived from a graph is upper bounded by the linear
combination of the sub-trees of the graph.

Although the number of sub-trees may be untraceable, the
problem turns out to be solvable using local marginal
information that is only related to the nodes and edges in the
dual space because of the convexity of the upper bound.

There is a constraint imposed on the upper bound: the count
of edges of the graph and the count of edges in the sub-trees
need to be consistent.

The constraint can be met with a special message passing
construction: tree-reweighted belief propagation.
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Introduction
Maximum a Posteriori Probability and Graphical Model

Definition and Symbols

Markov Random Fields

@ Advantage of MRF

@ Well structured isotropic behavior
o Local dependencies

@ Disadvantages of MRF

o Difficult to compute probability
o Parameter estimation is hard

@ Applications: too many to list
@ Machine learning, Imaging, Computer Vision, Economics etc.
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Introduction
Maximum a Posteriori Probability and Graphical Model

Definition and Symbols

Random Fields

@ Random variables Y can be considered a Markov Random Field
(MRF) on S if:

e P(Y)>0
° P(}/i|)/$—{i}) = P(yilyn;)

We can also formulate this based on graphical model. Let G = (V, E) be
a graph with vertices V' and edges E. Vertices V = X U Y with X as the
observation and Y (label) as random variables. The factorization is
defined by: Hammersley-Clifford’s Theorem. Assume that
p(Y1,---,¥n) > 0 Then,

ply) = eXP( > dclxc )

where C is a clique, subset of nodes that are fully connected in the graph.
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Introduction
Maximum a Posteriori Probability and Graphical Model
Definition and Symbols

Graphical Representation

r

Let's denote black nodes as observed nodes y; and white nodes as hidden nodes x;.
The overall joint probability of p(x,y) is:

1
p(x,y) = Z I |wij(Xi:Xj) | I¢i(Xl'»yi)
i i

where the v¥ji(x;, x;) and ¢;(x;, y;) are joint compatibility functions. Then the
Maximum A Posteriori (MAP) is given by: argmax, p(x|y).
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Introduction
Maximum a Posteriori Probability and Graphical Model
Definition and Symbols

A Image Denoise/Segmentation Example

Bags' |
Thacress.

g 2 & S > » 4
Original Image Noisy Image
Restored Image (ICM) Restored Image (Graph cuts)

Pattern Recognition and Machine Learning
(C.M. Bishop)
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Introduction
Maximum a Posteriori Probability and Graphical Model

Definition and Symbols

MAP and Graphical Model

@ Message passing (MP) is popular in solving MAP problems (integer
programming) in acyclic graph.
@ MP exploits the conditional independent properties which is the key to factorize

the graph.
A
-
B

m |

P(A,B,C,D,E,F) = P(A)P(C)P(BJA)P(D|C,A)P(E|B)P(F|A, B, D)

For the undirected graph, the overall joint probability of p(x,y) is:
1
ply) =~ [T i) [ [ witxx)
i ij
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Introduction
Maximum a Posteriori Probability and Graphical Model

Definition and Symbols

MP in Undirected Graph

A typical message passing route is shown as:

mu(xo/' *
/()

(%) 1o (%)

3 ()

The belief at a node i is proportional to the product of the local evidence at that node
(#i(xi)), and all messages coming into node i:

bi(x) = keila) [T mitx)
JEN (i)

mU(XJ) Z¢I(Xl wlj(xhxj) H mkl XI

keN\j
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Introduction
Maximum a Posteriori Probability and Graphical Model

Definition and Symbols

Preliminaries
An undirected graph is defined as G(V, E). For each s € V, let Xs be a random
variable taking values xs in sample space Xs and Xs := {0,..., ms — 1}. For n = |V/|

elements, X takes values x in the Cartesian product space X" := X1 X A X ... X Xj.
A full collection of potential functions associated with a given clique C is mapping

¢ : X" — R? with {¢a]a € T} and d = |Z|. 6 = {0a|a € T} is the vector of
parameter. Then, strictly positive MRF can be represented as:

P(x; 0) o< exp {(6, ()} = exp 3 faba(x)
a€Z
For easy annotation, we define the following indicator functions:
{8;(xs)|j € Xs}, forse vV
{8;(6)0k(x)[ U, k) € (X)s x Az}, for (s, t) € E
Marginal distribution can be represented by:

psy = Epldi0a)l = > p(x)8j(xs)

xeXn

pstij = Epl8j(x)8k(xe)] = D p(x)[5 ()8 (xe)]

XEX
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Introduction
Moti Maximum a Posteriori Probability and Graphical Model
Definition and Symbols

Linear Constraints and MAP Estimation

Linear Constraints

Z Hsj =1, VsV
JEXS
> ke =1 V(s,t) EEj € X
(U,k)EXs x X
ST mstji = psyy (s, t) € E,j € Xs
keX,

MAP Estimation

&et 0 be a given vector of paranleter of RY. Let O5(xs) := EJEXS 05,70;(xs). Let
Ost(xsi x¢) == Z(j,k)EXSXXt Ost.jk 9 (xs)) (xt). MAP is to maximize:

(@.60)) = 3 Balxe) + D Barlxes xe)

sev (s,t)€E
For the convenience, we define the MAP as follows:

¢m@%:XQ%A@¢U» 1)
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m Tree-

Convexity

Convexity of Phi
Upper Bounds

Claim: ®; is convex in terms of 6

Let's start with a more general log-partition function: ®(6) = log = exp{07 ¢(x)}.

)
90y

8%
96,00,

> exp{67T¢(x)}
exp $(0)
S exp{07 p(x) — ©(0)} bk (x)
>~ p(x; 0) i (x)

X

E{64(X)}
8% 3w (07609 — o)} g

0
20,

E{ox(X)o/(X)} — { Dk (X)IE{ b1 (X)}
Covp{dk(x), ¢1(x)}-

S exp{07 6(x) — ®(0)}ey(x) —

16k (x)
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Motivation Convexity of Phi
Upper Bounds

[llustration of Edge Appearance in Probabilities

® 060
® 0o O
® 0 O
For p(x, 8) o exp(x1x2 + x2x3 + X3Xa + Xax1),

f=[00001111]. Then p(T;)=1/4 and p. = 3/4 for each
e € E. The can construct a member 6 as follows:

0(T1) = (4/3)00001110]
O(T) = (4/3)00001101]
0(Ty) = (4/3)00001011]
6(Ty) = (4/3)00000111]
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Introduction
Motivation Convexity of Phi
thr Upper Bounds

Upper Bounds via Convex Combinations

Let p' be a finite collection of nonnegative weights that sum to one, s.t., > Pl =4.
Applying Jensen's inequality yields the upper bound: ®oo < > P P (7). Each

P (") represents an acyclic subgraph, for which exact computation are tractable.
The index i corresponds to a spanning tree of the graph and all parameters are
required to respect the structure of the tree. For a convex combination of tree
parameters, E,[0(T)] =3+ p(T)O(T):

Tightness of Upper Bounds

=}
IN

{Z o( T)%O(G(T))] —o(9)
-

[Z p(T)%o(G(T))] = (0, ¢(x"))
-

DT [@oo(6(T)) — (O(T), &(x*))]
=

The bound is tight if and only if x* € Nt OPT(6(T)) for some x* € OPT(@).
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W Motivation Convexity of Phi

Upper Bounds

Objective

The optimal value of the above problem can be obtained by:

mix Z Z Ns;jgs;j + Z Z NSt;jkan?jk

seV j (s,t)EE j,k
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Motivation Convexity of Phi

Upper Bounds

Claim: ®oo(f) = max 2sev Zj ”sjgs;j + Z(s,j)eE Zj,k Mst;jkgst;jk

Proof

By definition of ®oo, maxycxn (0, #(x)) = maxpep >y n P(x)(0, B(x)).

Y p(x)(@, 6(x) > px) {Z9s(><s)+ > 9sr(Xs,Xr)}

xexn xexn seV (s,t)€E
= Z Z p’s;jgs;j + Z Z Nst;jkest;jk
seV j (s,t)EE j,k

where pg;j == ZXGX" p(x)9j(xs) and pstju := ZXGX" P(x)djk (s, Xt)
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[
Cill_ Motivation Convexity of Phi

Upper Bounds

Lagrange Dual of the Objective Function

= > AT )+T(§ p(T)O(T) —0)
-

= > AP (8(T)) = (6(T), )] + (7,6)

-

The Lagrange dual is then:

Zp mf [0 (0(T)) = (O(T), 7)] + (7,0)

So, 22OV OTT) — 0 and 7 = E[$(x))].
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W Max-Marginals

Tree-Reweighted Message-Passing Algorithms Algorithm

Max-Marginal Factorization

Any tree-structured distribution can be factorized in terms of its max-marginals as

follows: ( )
Mst(Xs, Xt

p(;O(T) o [[us(x) [T —=

sev (s.e () MO )me(t)

The tree-structured parameter 8( T) is defined in terms of logarithms of p:

03(T)(xs) = logus(xs)Vse V
N ex) = log HetCexd)
Pl ) | g#S(XS)Ht(Xt) (s1) € E(T)
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W Max-Marginals

Tree-Reweighted Message-Passing Algorithms Algorithm

Edge Based Reparameterization Updates

For iterations n = 0,1,2, ..., update the max-marginals as follows:
Pst
max,; pg(Xs, Xt)
W e) = kulle) [ | —e
ter(s) 13 (xs)
T (Xs, Xi
ug:»l(xs7xt) — k /‘Lst( S t) n+1

X. n+1X
g (s, ) manog BRG ) e e 0

In terms of messages, max-marginals are as follows:
ps(xs) o< Ps(xs) H [Mus(xs)]7
ver(s)

Iver@ne M1 Tl ergs [Mve ()17
,U'St(Xs,Xt) X ¢St(Xs, Xt) [Mts(Xs)](lip“) [Mst(Xt)](lfp“)
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W Max-Marginals

Tree-Reweighted Message-Passing Algorithms Algorithm

Edge Based Reparameterization Updates

The above construction establishes that for all x € X", we have:

Zp( T)H(T)(X) = ng(xs Z Qst X57Xt)
T

seV (s,t)EE
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W Max-Marginals

Tree-Reweighted Message-Passing Algorithms Algorithm

Parallel Tree-Reweighted Message Passing Algorithm

- ——
() ()

15 (x5)

@ Initialize the message m® = m:(y)' with arbitrary positive numbers.

@ for each iteration, update the message as follows:

1 I1 [my (x¢)]P+
n+1 . ver(t)\s vt\ "'t

mi ™ (xs) = k E, exp (T)ts pst(xs, x¢) + Mt(X{)) X T Imn ()] es)

Xt
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W Max-Marginals

Tree-Reweighted Message-Passing Algorithms Algorithm

Local Beliefs

Once the process has converged, the local belief can be calculated
as:

bs(xs) = k exp(—ps(xs)) H [mis(xs)]7*
tel(s)
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Max-Marginals
ithms Algorithm
clu

Testing Example
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m n Max-Marginals

Tree-Reweighted Message-Passing Algorithms Algorithm
Conclusion

Testing Example
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Conclusion

Conclusion

@ The paper provides an upper bound for the optimal (MAP)
configuration.

@ The new tree-reweighted free energy is convex with respect to
the max-marginals vector

@ No sufficient conditions to guarantee convergence on graphs
with cycles.

@ The demo code can be downloaded from
http://code.google.com/p/random-field-blief-propagation/
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