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What Is This Paper About

MAP derived from a graph is upper bounded by the linear
combination of the sub-trees of the graph.

Although the number of sub-trees may be untraceable, the
problem turns out to be solvable using local marginal
information that is only related to the nodes and edges in the
dual space because of the convexity of the upper bound.

There is a constraint imposed on the upper bound: the count
of edges of the graph and the count of edges in the sub-trees
need to be consistent.

The constraint can be met with a special message passing
construction: tree-reweighted belief propagation.
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Markov Random Fields

Advantage of MRF
Well structured isotropic behavior
Local dependencies

Disadvantages of MRF
Difficult to compute probability
Parameter estimation is hard

Applications: too many to list
Machine learning, Imaging, Computer Vision, Economics etc.
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Random Fields

Random variables Y can be considered a Markov Random Field
(MRF) on S if:

P(Y ) > 0
P(yi |yS−{i}) = P(yi |yNi

)

We can also formulate this based on graphical model. Let G = (V ,E ) be
a graph with vertices V and edges E . Vertices V = X ∪ Y with X as the
observation and Y (label) as random variables. The factorization is
defined by: Hammersley-Clifford’s Theorem. Assume that
p(y1, . . . , yn) > 0 Then,

p(y) =
1

Z
exp

(

−
∑

C

φC (xC )

)

where C is a clique, subset of nodes that are fully connected in the graph.
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Graphical Representation

Let’s denote black nodes as observed nodes yi and white nodes as hidden nodes xi .
The overall joint probability of p(x , y) is:

p(x , y) =
1

Z

∏

ij

ψij (xi , xj )
∏

i

φi (xi , yi )

where the ψij (xi , xj ) and φi (xi , yi ) are joint compatibility functions. Then the

Maximum A Posteriori (MAP) is given by: argmaxx p(x |y).
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A Image Denoise/Segmentation Example
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MAP and Graphical Model
Message passing (MP) is popular in solving MAP problems (integer
programming) in acyclic graph.
MP exploits the conditional independent properties which is the key to factorize
the graph.

Example

P(A,B,C ,D,E ,F ) = P(A)P(C)P(B|A)P(D|C ,A)P(E |B)P(F |A,B,D)

For the undirected graph, the overall joint probability of p(x,y) is:

p(x , y) =
1

Z

∏

i

φi (xi )
∏

i,j

ψij (xi , xj )
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MP in Undirected Graph
A typical message passing route is shown as:

The belief at a node i is proportional to the product of the local evidence at that node
(φi (xi )), and all messages coming into node i :

bi (xi ) = kφi (xi )
∏

j∈N (i)

mji (xi )

mij (xj ) =
∑

xi

φi (xi )ψij (xi , xj )
∏

k∈N\j

mki (xi )
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Preliminaries
An undirected graph is defined as G(V ,E). For each s ∈ V , let Xs be a random
variable taking values xs in sample space Xs and Xs := {0, . . . ,ms − 1}. For n = |V |
elements, X takes values x in the Cartesian product space X n := X1 × X2 × . . .× Xn.
A full collection of potential functions associated with a given clique C is mapping
φ : X n → Rd with {φα|α ∈ I} and d = |I|. θ = {θα|α ∈ I} is the vector of
parameter. Then, strictly positive MRF can be represented as:

p(x ; θ) ∝ exp {〈θ,φ(x)〉} ≡ exp
∑

α∈I

θαφα(x)

For easy annotation, we define the following indicator functions:

{δj (xs)|j ∈ Xs}, for s ∈ V

{δj (xs)δk (xt)|(j , k) ∈ (X )s × Xt}, for (s, t) ∈ E

Marginal distribution can be represented by:

µs;j := Ep [δj (xs)] =
∑

x∈X n

p(x)δj (xs)

µst;jk := Ep [δj (xs)δk (xt)] =
∑

x∈X

p(x)[δj (xs)δk (xt)]
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Linear Constraints and MAP Estimation

Linear Constraints

∑

j∈Xs

µs;j = 1, ∀s ∈ V

∑

(j,k)∈Xs×Xl

µst;jk = 1, ∀(s, t) ∈ E , j ∈ Xs

∑

k∈Xl

µst;jk = µs;j , ∀(s, t) ∈ E , j ∈ Xs

MAP Estimation

Let θ be a given vector of parameter of Rd . Let θs (xs ) :=
∑

j∈Xs
θs;jδj (xs ). Let

θst (xs ; xt ) :=
∑

(j,k)∈Xs×Xt
θst;jkδj (xs )δk (xt ). MAP is to maximize:

〈θ,φ(x)〉 :=
∑

s∈V

θs (xs ) +
∑

(s,t)∈E

θst (xs , xt )

For the convenience, we define the MAP as follows:

Φ∞(θ) := max
x∈(X )n

〈θ,φ(x)〉 (1)
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Convexity
Claim: Φ∞ is convex in terms of θ

Proof

Let’s start with a more general log-partition function: Φ(θ) = log
∑

x exp{θTφ(x)}.

∂Φ

∂θk
=

∑
x exp{θTφ(x)}φk (x)∑

x exp{θTφ(x)}

=

∑
x exp{θTφ(x)}φk (x)

expΦ(θ)

=
∑

x

exp{θTφ(x) − Φ(θ)}φk (x)

=
∑

x

p(x ; θ)φk (x)

= E{φk (X )}

∂2Φ

∂θk∂θl
=

∂

∂θl

∑

x

exp{θTφ(x) − Φ(θ)}φk x

=
∑

x

exp{θTφ(x) − Φ(θ)}[φl (x) −
∂Φ(θ)

∂θl
]φk (x)

= E{φk (X )φl (X )} − {φk (X )}E{φl (X )}

= Covp{φk (x),φl (x)}.
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Illustration of Edge Appearance in Probabilities

For p(x , θ) ∝ exp(x1x2 + x2x3 + x3x4 + x4x1),
θ = [0 0 0 0 1 1 1 1]. Then ρ(Ti ) = 1/4 and ρe = 3/4 for each
e ∈ E . The can construct a member θ as follows:

θ(T1) = (4/3)[0 0 0 0 1 1 1 0]

θ(T1) = (4/3)[0 0 0 0 1 1 0 1]

θ(T1) = (4/3)[0 0 0 0 1 0 1 1]

θ(T1) = (4/3)[0 0 0 0 0 1 1 1]
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Upper Bounds via Convex Combinations

Let ρi be a finite collection of nonnegative weights that sum to one, s.t.,
∑

i ρ
iθi = θ.

Applying Jensen’s inequality yields the upper bound: Φ∞ ≤
∑

i ρ
iΦ∞(θi ). Each

Φ∞(θi ) represents an acyclic subgraph, for which exact computation are tractable.
The index i corresponds to a spanning tree of the graph and all parameters are
required to respect the structure of the tree. For a convex combination of tree
parameters, Eρ[θ(T )] :=

∑

T ρ(T )θ(T ):

Tightness of Upper Bounds

0 ≤

[

∑

T

ρ(T )Φ∞(θ(T ))

]

− Φ(θ)

=

[

∑

T

ρ(T )Φ∞(θ(T ))

]

− 〈θ,φ(x∗)〉

=
∑

T

ρ(T ) [Φ∞(θ(T ))− 〈θ(T ),φ(x∗)〉]

The bound is tight if and only if x∗ ∈ ∩TOPT (θ(T )) for some x∗ ∈ OPT (θ).
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Objective

{

minθ
∑

T ρ(T )Φ∞(θ(T ))

s.t.
∑

T ρ(T )θ(T ) = θ

Theorem

The optimal value of the above problem can be obtained by:

max
µ

∑

s∈V

∑

j

µs;jθs;j +
∑

(s,t)∈E

∑

j ,k

µst;jkθst;jk
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Proof I

Claim: Φ∞(θ) = max
∑

s∈V

∑

j us;jθs;j +
∑

(s,j)∈E

∑

j,k µst;jkθst;jk

Proof

By definition of Φ∞, maxx∈X n 〈θ,φ(x)〉 = maxp∈P
∑

x∈X n p(x)〈θ,φ(x)〉.

∑

x∈X n

p(x)〈θ,φ(x)〉 =
∑

x∈X n

p(x)







∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs , xt)







=
∑

s∈V

∑

j

µs;jθs;j +
∑

(s,t)∈E

∑

j,k

µst;jkθst;jk

where µs;j :=
∑

x∈X n p(x)δj (xs) and µst;jk :=
∑

x∈X n p(x)δjk(xs , xt)
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Lagrange Dual of the Objective Function

L =
∑

T

ρ(T )Φ∞(θ(T )) + τ(
∑

T

ρ(T )θ(T )− θ)

=
∑

T

ρ(T )[Φ∞(θ(T ))− 〈θ(T ), τ〉] + 〈τ, θ〉

The Lagrange dual is then:

∑

T

ρ(T ) inf
θ(T )

[Φ∞(θ(T ))− 〈θ(T ), τ〉] + 〈τ, θ〉

So, ∂Φ∞(θ(T ))−〈θ(T ),τ〉
∂θ

= 0 and τ = E [φ(x)].
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Max-Marginal Factorization

Any tree-structured distribution can be factorized in terms of its max-marginals as
follows:

p(x ; θ(T )) ∝
∏

s∈V

µs(xs)
∏

(s,t)∈E(T )

µst(xs , xt)

µs(xs)µt(t)

The tree-structured parameter θ(T ) is defined in terms of logarithms of µ:

θns (T )(xs) = log µs(xs) ∀s ∈ V

θnst(xs , xt) = log
µst(xs , xt)

µs(xs)µt(xt)
(s, t) ∈ E(T )
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Edge Based Reparameterization Updates

For iterations n = 0, 1, 2, . . ., update the max-marginals as follows:

µn+1
s (xs) = kµn

s (xs)
∏

t∈Γ(s)

[

maxx′t µ
n
st(xs , x

′
t )

µn
s (xs)

]ρst

µn+1
st (xs , xt) = k

µn
st(xs , xt)

maxx′t µ
n
st(xs , x

′
t )maxx′s µ

n
st(x

′
s , xt)

µn+1
s (xs)µ

n+1
t (xt)

In terms of messages, max-marginals are as follows:

µs(xs) ∝ φs(xs)
∏

v∈Γ(s)

[Mvs(xs)]
ρvs

µst(xs , xt) ∝ φst(xs , xt)

∏

v∈Γ(s)\t [Mvs(xs)]ρvs

[Mts(xs)](1−ρts )
×

∏

v∈Γ(t)\s [Mvt(xt)]ρvt

[Mst(xt)](1−ρst )
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Edge Based Reparameterization Updates

The above construction establishes that for all x ∈ X n, we have:
∑

T

ρ(T )θ(T )(x) =
∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs , xt)
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Parallel Tree-Reweighted Message Passing Algorithm

Initialize the message m0 = m0
ij with arbitrary positive numbers.

for each iteration, update the message as follows:

mn+1
ts (xs) = k

∑

x′t

exp

(

1

ρts
µst(xs , x

′
t ) + µt(x

′
t )

)

×

∏

v∈Γ(t)\s [m
n
vt(x

′
t )]

ρvt

[mn
st(x

′
t )]

(1−ρst )
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Local Beliefs

Once the process has converged, the local belief can be calculated
as:

bs(xs) = k exp(−µs(xs))
∏

t∈Γ(s)

[mts(xs)]
ρts
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Testing Example
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Conclusion

The paper provides an upper bound for the optimal (MAP)
configuration.

The new tree-reweighted free energy is convex with respect to
the max-marginals vector

No sufficient conditions to guarantee convergence on graphs
with cycles.

The demo code can be downloaded from
http://code.google.com/p/random-field-blief-propagation/
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